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Abstract
Within the framework of the ODE/IM correspondence, we show that the
minimal conformal field theories with c < 1 emerge naturally from the
monodromy properties of certain families of ordinary differential equations.

PACS numbers: 02.30.Hq, 02.30.Ik, 11.25.Hf

1. Introduction

This note is about a unifying programme, the ODE/IM correspondence, which links two-
dimensional conformal field theories and integrable models to the spectral theory of ordinary
differential equations. The first instance of this correspondence [1] was based on an identity
between the transfer matrix eigenvalues of certain integrable models in their conformal limits
[2, 3], and the spectral determinants [4, 5] of second-order ordinary differential equations.
Since the initial results of [1] and then [6], the ODE/IM correspondence has been used in
various branches of physics ranging from condensed matter [7] to PT-symmetric quantum
mechanics [8], and from boundary conformal field theory [9] to the study of non-compact
sigma models [10]. It has also been linked with the geometric Langlands correspondence [11].
A recent review containing many more references is [12].

Early examples of the correspondence concerned the ground states of the integrable lattice
models, albeit with possibly twisted boundary conditions. In the conformal field theory setting
this gave access to primary fields, but not to their descendants. However, in [13] Bazhanov,
Lukyanov and Zamolodchikov conjectured that the descendant fields could be found through
relatively-simple generalizations of the initial differential equation. The new equations were
obtained by modifying the initial potential, which in general has a regular singularity at zero
and an irregular singularity at infinity, by introducing a level-dependent number of additional
regular singularities in the complex plane, subject to a zero-monodromy condition around
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these extra singularities, though not about the origin. In this short note we will show that the
minimal c < 1 conformal field theories can equivalently be associated with ODEs governed
by a trivial monodromy property in the whole complex plane, including the origin. A natural
quantization condition on the coefficient of the regular (Fuchsian) singularity at the origin
emerges, and since this coefficient is related to the Virasoro vacuum parameter p of [2, 3]
this restricts the resulting conformal weights, so as to match precisely the Kac tables of the
minimal models Mab.

2. The c < 1 minimal models

We begin with the basic observation of [1, 6], that the Schrödinger equation(
− d2

dx2
+ (x2M − E) +

l(l + 1)

x2

)
ψ(x,E, l) = 0 (1)

is related to conformal field theory. The Stokes relations associated with (1) imply constraints
on its eigenvalues E ∈ {Ei}, given suitable boundary conditions, which coincide with the
Bethe Ansatz equations (BAEs) for the twisted six-vertex model in its conformal (c = 1)

limit (see, for example, [12]). The same BAEs emerge from the study of c � 1 CFTs in the
framework developed by Bazhanov, Lukyanov and Zamolodchikov in [2, 3]. In the notation
used in [13], equation (1) encodes the primary field of a Virasoro module with central charge c,
vacuum parameter p and highest weight �, where

c(M) = 1 − 6M2

M + 1
, p = 2l + 1

4M + 4
, �(M, l) = (2l + 1)2 − 4M2

16(M + 1)
. (2)

In [14] it was observed that for 2M rational and suitable values of l, the solutions to (1) will all
lie on a finite cover of the complex plane, and that this translates into a truncation of the fusion
hierarchy [15] of the associated integrable model. This is of particular interest because, for
such truncations, the central charges and field contents map to those of the minimal models
with c < 1 (see, for example, the discussion in section 3 of [16]). However only the simplest
case of 2M integer and l(l+1) = 0 was discussed explicitly in [14], in part because the general
monodromies of solutions are hard to unravel in the presentation (1). One of our aims in
this note is to show that a much simpler treatment is possible, from which the Kac tables of
minimal model primary fields emerge in a very natural fashion.

Working backwards, we first note that, for any two coprime integers a < b, the ground
state of the minimal model Mab is found by setting

M + 1 = b

a
, l +

1

2
= 1

a
(3)

in (1). This corresponds to the central charge cab = 1 − 6
ab (b−a)2 and (lowest-possible)

conformal weight � = 1
4ab (1 − (b−a)2).

We now observe, as in section 6 of [17], that the l(l+1)/x2 term in (1) can be eliminated,
for this value of l, by the following transformation:

x = za/2, ψ(x,E) = za/4−1/2y(z,E). (4)

With a further rescaling z → (2/a)2/bz, (1) becomes(
− d2

dz2
+ za−2(zb−a − Ẽ)

)
y(z, Ẽ) = 0, (5)

where

Ẽ =
(a

2

)2−2a/b

E. (6)

2
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Note that the change of variable has replaced the singular generalized potential P(x) =
x2b/a−2 − E + (1/a2 − 1/4)x−2, defined on a multi-sheeted Riemann surface, by a simple
polynomial W(z) = za−2(zb−a − Ẽ). In particular, any solution to (5) is automatically
single-valued around z = 0, and the truncation of the fusion hierarchy as explained in
section 4 of [14] is made much more transparent.

To see which other primary states in the original model might have similarly-trivial
monodromy, we keep l real with l + 1/2 > 0, but otherwise arbitrary, and again perform the
change of variable (4). The result is now(

− d2

dz2
+

l̃(l̃ + 1)

z2
+ za−2(zb−a − Ẽ)

)
y(z, Ẽ, l̃) = 0, (7)

where

2
(
l̃ + 1

2

) = a
(
l + 1

2

)
. (8)

The Fuchsian singularity in (7) at z = 0 means that the equation admits a pair of solutions
which generally have the power series expansions

χ1(z) = zλ1

∞∑
n=0

cnz
n; χ2(z) = zλ2

∞∑
n=0

dnz
n, (9)

where λ1 = l̃ + 1 and λ2 = −l̃ are the two roots of the indicial equation

λ(λ − 1) − l̃(l̃ + 1) = 0. (10)

A general solution to (7) can be expressed as y(z, Ẽ, l̃) = σχ1(z) + τχ2(z), and we shall
demand that the transformed ODE should be such that, for arbitrary Ẽ, the monodromy of
y(z, Ẽ, l̃) around z = 0 is projectively trivial, which is to say that

y(e2π i z) ∝ y(z). (11)

This condition ensures that the eigenvalues obtained by imposing the simultaneous decay of
solutions in a pair of asymptotic directions at infinity are independent of the path of analytic
continuation between these two directions. We shall show that the condition imposes the
following constraints on l̃:

(i) 2l̃ + 1 is a positive integer;
(ii) The allowed values of 2l̃ + 1 are those integers which cannot be written as as + bt with

s and t non-negative integers. In other words they form precisely the set of holes of the
infinite sequence

as + bt, s, t = 0, 1, 2, 3 . . . . (12)

We shall call the integers (12) ‘representable’ and denote the set of them by Rab.

As a consequence we shall see that, as l̃ runs over its ‘allowed’ values, the rational numbers

�l̃ = �(M, l)|M=b/a−1,l=l(l̃) = (2l̃ + 1)2 − (a − b)2

4ab
(13)

precisely reproduce the set of conformal weights of the primary states lying in the Kac table
of the minimal model Mab. Figures 1 and 2 illustrate the story for the Ising and Yang–Lee
cases.

To establish these claims we first note that the requirement that the general solution y(z)

be projectively trivial means that χ1(z) and χ2(z) must have the same monodromy, which
implies that the two roots of the indicial equation must differ by an integer

λ1 − λ2 = 2l̃ + 1 ∈ N. (14)

3
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1
216

10

0 1 2 3 4 5 6 7 8 9

Figure 1. The holes (open circles) in the infinite sequence of integers defined in (12) for the critical
Ising model M34. The holes are at 1, 2 and 5; the resulting conformal weights according to (13)
are also shown, matching the primary field content of the Ising model.

0 1 2 3 4 5 6 7 8 9

1
5

0

Figure 2. Holes for the Lee–Yang model M25, at 1 and 3. Notation as in figure 1.

This in turn restricts l̃ to be an integer or half integer, so that, naı̈vely, the allowed solutions
are even or odd under a 2π rotation around z = 0. However it is well known that in such
a circumstance, while χ1(z) keeps its power series expansion (9), χ2(z) generally acquires a
logarithmic contribution:

χ2(z) = Dχ1(z) log(z) +
1

zl̃

∞∑
n=0

dnz
n. (15)

Unless D = 0, this will spoil the projectively trivial monodromy of y(z). We now show that
D = 0 if and only if 2l̃ + 1 obeys the constraint (ii). In fact the logarithmic term is only absent
when the recursion relations for dn’s with D = 0 admit a solution. These relations are

n(n − 2l̃ − 1)dn = dn−b − Ẽdn−a (16)

with the initial conditions d0 = 1, dm<0 = 0.
Consider first the situation when 2l̃ + 1 /∈ Rab. Then, starting from the given initial

conditions, the recursion relation (16) generates a solution of the form

χ2(z) = 1

zl̃

∞∑
n=0

dnz
n, (17)

where the only nonzero dn’s are those for which the label n lies in the set Rab. Given that
2l̃ + 1 /∈ Rab, for these values of n the factor n(n − 2l̃ − 1) on the lhs of (16) is never zero, and
hence this procedure is well defined.

If instead 2l̃ + 1 ∈ Rab, then equation (16) taken at n = 2l̃ + 1 yields the additional
condition

Ẽd2l̃+1−a − d2l̃+1−b = 0, (18)

which is inconsistent for generic Ẽ, and so the logarithmic term is required5.

5 The reader might wonder whether the lhs of (18) could vanish identically as a result of an exceptional cancellation
between the two terms. This can be ruled out by observing that the monodromy property in z is unaltered by the change
of variable z → β1/bz. This rescaling leads to a more general version of (16): n(n − 2l̃ − 1)dn = αdn−a + βdn−b

with α = −Ẽβa/b. Then for the particular choice α = (−1)a+1, β = (−1)b+1, one can see that αdn−a and βdn−b

must have the same sign for n � 2l̃ + 1; hence, they cannot cancel identically.

4
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Given the characterization (12) of Rab, the set Z
+ of non-negative integers can be written

as a disjoint union

Z
+ = Rab ∪ Nab, (19)

where Nab is the set of ‘nonrepresentable’ integers. If the coprime integers a and b are larger
than 1 then Nab is non-empty; in fact |Nab| = 1

2 (a−1)(b−1), a result which goes back to
Sylvester [18].

To characterize Nab more precisely, we start with the fact that given two coprime integers
a and b, any integer n can be written as

n = as0 + bt0, s0, t0 ∈ Z. (20)

This is a classical result of number theory. An intuitive proof uses Euclid’s algorithm for
the greatest common divisor of two integers. Alternatively one can invoke the Euler totient
function ϕ6 and the following theorem (see, for example, [19])

aϕ(b) ≡ 1(mod b), (21)

which implies that aϕ(b) = 1 + hb for some integer h. This immediately yields the solution
s0 = naϕ(b)−1, t0 = −nh. However, for any given n, this is not the only possibility. More
precisely, we have as0 + bt0 = as + bt for some other pair of integers (s, t) if and only if
s = s0 + bk, t = t0 − ak for some k ∈ Z. This is easily proved: rearrange (20) as

a(s0 − s) = b(t − t0). (22)

Since (a, b) = 1, b must be a factor of s0 − s and so s0 − s = −bk for some k. Dividing (22)
by b then shows that t0 − t = ak, as required. Hence the possible representatives for each
integer n constitute the line of points (s, t) = (s0 + bk, t0 − ak), k ∈ Z . For n to be a positive
integer, as + bt > 0, or s > −bt/a. If none of these points has both coordinates non-negative,
then the corresponding n will be in Nab. To keep t non-negative while making s as large as
possible, we shift t by a multiple of a so that 0 � t < a. If s is still negative, then n will be in
Nab. The numbers we want are therefore represented by the points

{(s, t), 0 � t < a,−bt/a < s � −1}. (23)

Negating t, the allowed (trivial monodromy) values of 2l̃ + 1 are therefore

2l̃ + 1 = as − bt, 0 � t < a, 1 � s < bt/a. (24)

Figure 3 illustrates the argument.
Substituting back using (8) and (2), the allowed values for the conformal weights �

precisely reproduce the Kac table for the minimal model Mab:

� = �s,t = (as − bt)2 − (a − b)2

4ab
, 1 � t < a, 1 � s < bt/a. (25)

It is striking that the full Kac table should emerge from such a simple consideration of
the monodromy properties of the transformed differential equation (7). Finally, note that
everything is symmetric in a and b so the same result can be obtained by starting from
M + 1 = a/b instead.

Another way to characterize Nab is through the generating function

P(z) = (1 − za)(1 − zb) − (1 − z)(1 − zab)

(1 − z)(1 − za)(1 − zb)
. (26)

6 ϕ(b) denotes the number of coprimes with b in the set 1, 2, . . . , b.

5
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t

s

Figure 3. A graphical representation of the nonrepresentable integers for a = 3, b = 5, Nab =
{1, 2, 4, 7}. The elements of Nab correspond to the four unshaded points. Three of the lines
(s, t) = (s0 + bk, t0 − ak) have also been shown; each such line contains exactly one point in the
region 0 � t < a between the two dotted horizontal lines.

It is straightforward to show that such a rational function is actually a polynomial, because all
the zeros of the denominator are cancelled by zeros of the numerator; we would like to show
that

P(z) =
∑

2l̃+1∈Nab

z2l̃+1. (27)

To see this, first note that Taylor expanding 1/(1 − za)(1 − zb) yields

1

(1 − za)(1 − zb)
=

∑
n∈Rab

cnz
n, (cn > 0). (28)

In order to get rid of the unknown cn’s, we combine the trivial identity

1

1 − za
=

∞∑
n=0

znab
b−1∑
r=0

zra (29)

with the similar one for 1/(1 − zb) to write

1

(1 − za)(1 − zb)
=

∞∑
n=0

(n + 1)znab
b−1∑
r=0

a−1∑
s=0

zra+sb. (30)

As a consequence the generating function of representable integers is

1 − zab

(1 − za)(1 − zb)
=

∞∑
n=0

znab
b−1∑
r=0

a−1∑
s=0

zra+sb =
∑
n∈Rab

zn. (31)

Therefore the difference

P(z) ≡ 1

1 − z
− 1 − zab

(1 − za)(1 − zb)
(32)

is the sought after formula (27).
Before concluding this section we would like to mention that there is another ODE that can

be associated with the same series of minimal models. This is the so-called A
(2)
2 description,

6
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related to φ12, φ21 and φ15 perturbations [20]. After a simple change of variable, the relevant
third-order φ12-related ODE can be cast into the form[(

d

dz
− g̃

z

) (
d

dz

)(
d

dz
+

g̃

z

)
+ (z2b−3 − Ẽza−3)

]
y(z,E, g̃) = 0. (33)

Swapping a and b gives the φ21-related ODE, while replacing a with 2a and b with b/2 yields
the φ15 equation. In all cases, the indicial equation is

(λ + g̃)(λ − 1)(λ − (g̃ + 2)) = 0. (34)

The zero relative monodromy condition among the three solutions to (33) requires (g̃ + 1) to
be a (positive) integer, and to avoid logarithmic terms we should also simultaneously impose
the following two conditions:

(g̃ + 1) /∈ {2bt + as}, 2(g̃ + 1) /∈ {2bt + as} (35)

with s, t = 0, 1, 2, . . . . For a odd, it is easy to check that equations (35) lead to the same set
of integers as the su(2)-related case discussed above, while only a subset is recovered for a
even. For the φ21-related case, the opposite situation occurs: for a even the full Kac table is
recovered, while for a odd only a subset is found.

3. Further generalizations and conclusions

There are many possible generalizations of the above results. The existence of a simpler
version, equation (7), of the basic ODE for minimal CFTs is not restricted to c < 1 Virasoro
models, but generalizes to the higher su(2) coset CFTs of [21] and to the ABCD-related
theories of [22]. The pseudo-differential equations listed in section 3 of [22] include the
minimal models

ĝL × ĝK

ĝL+K

, g = An,Bn, Cn,Dn (36)

at fractional level L = Ka/(b−a)−h∨ with b−a = Ku, and u = 1, 2, . . . (using the notation
of appendix 18.B of [23]). We checked that after simple changes of variable, these equations
reduce to equations similar in form to the originals, but for a change in the ‘potential’, as
follows:

PK(x) = (xh∨(b−a)/aK − E)K −→ W(K,L)(z) = za−h∨
(z(b−a)/K − Ẽ)K. (37)

It is striking that when both L and K are integers the CFT is unitary and W(K,L)(z) simplifies
further to

W(K,L)(z) = zL(z − Ẽ)K. (38)

Equation (38) motivates some simple comments and speculations. First we observe that the
K ↔ L invariance of (36) manifests itself in (38) as a shift in z. As a consequence of
this symmetry, lateral quantization problems for the ground-state ODEs and the associated
Stokes multipliers are, up to Ẽ → −Ẽ, invariant under the exchange of L and K. However,
this symmetry is explicitly broken in equations with extra Fuchsian singularities as in (7).
A possible remedy is to treat the points z = 0 and z(b−a)/K = Ẽ more democratically. For
instance, in unitary models the symmetry is globally restored after the addition of a second
singularity at z = Ẽ, ensuring that the set of ODEs for the primary fields in a given CFT is
mapped into itself by the transformation. We suspect that a similar modification may also
resolve the problem of the missing states in the A

(2)
2 example discussed at the end of section 2.

7
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A further possibility is suggested by equation (38). Consider the following multi-
parameter generalization of (38):

W(z, e) = z

K+L−1∏
i=1

(z − ei), (39)

where the constants ei (i = 1, 2 . . . , K + L − 1) are free parameters. To keep the discussion
brief, we shall restrict attention to the ground-state equation for L + K = 3 and g = su(2).
Then if e1 = 0 and e2 = Ẽ the corresponding ODE is related to the tricritical Ising model M45,
while for (e1, e2) = (±

√
Ẽ,∓

√
Ẽ) the equation corresponds to M35. Therefore this simple

two-parameter model interpolates smoothly between equations associated with M45 and M35.
This phenomenon has a counterpart in the homogeneous sine-Gordon model corresponding to
integrable perturbations of the ˆsu(3)2/U(1)2 coset model. The thermodynamic Bethe ansatz
(TBA) equations for this model [24, 25] have two independent scale parameters µ1 and µ2. If
one of these parameters is set to zero, the TBA equations reduce to those for M45 + φ13 [26],
while for µ1 = µ2 the TBA equations map into a pair of identical equations for M35 +φ13 [27].
This, and other simple considerations, suggest that ODEs with multi-parameter potentials of
the form (39) may have an interesting interpretation in terms of conformal field theory. Much
more work will be needed in order to give this observation a more solid grounding, but we
feel that it will be an interesting direction for future exploration.
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